frenchhope: 2nd_frm* + intelligence artificielle générative* + algorithme* + langage* + 1st_revue* + neuroscience* + humain*

Les signets de cette page sont gérés par un administrateur.

1 signet(s) - Classer par : Date ↓ / Titre / Vote / - Signets des autres utilisateurs pour ce tag

  1. >Considerable progress has recently been made in natural language processing: deep learning algorithms are increasingly able to generate, summarize, translate and classify texts. Yet, these language models still fail to match the language abilities of humans. Predictive coding theory offers a tentative explanation to this discrepancy: while language models are optimized to predict nearby words, the human brain would continuously predict a hierarchy of representations that spans multiple timescales. To test this hypothesis, we analysed the functional magnetic resonance imaging brain signals of 304 participants listening to short stories. First, we confirmed that the activations of modern language models linearly map onto the brain responses to speech. Second, we showed that enhancing these algorithms with predictions that span multiple timescales improves this brain mapping. Finally, we showed that these predictions are organized hierarchically: frontoparietal cortices predict higher-level, longer-range and more contextual representations than temporal cortices. Overall, these results strengthen the role of hierarchical predictive coding in language processing and illustrate how the synergy between neuroscience and artificial intelligence can unravel the computational bases of human cognition.
    https://www.nature.com/articles/s41562-022-01516-2
    Vote 0

Haut de page

Première / Précédent / Suivant / Dernière / Page 1 de 1 Marque-pages / ESPITALLIER.NET: Tags: 2nd_frm + intelligence artificielle générative + algorithme + langage + 1st_revue + neuroscience + humain

À propos - Propulsé par SemanticScuttle